Major Atmospheric MAGIC-TDAS 00-02
Gamma Imaging OOO220/JCGonza|ez

Cerenkov Telescope

AN ABSTRACT VIEW OF THE DEVELOPMENT OF
AN ANALYSIS SYSTEM FOR THE MAGIC TELESCOPE

J C Gonzalez
Max Planck Institute for Physics, Munich
<gonzalez@mppmu.mpg.de>

February 20, 2000

Abstract

In this document I will to express my personal view on the design of an off-line, or
better non real-time conditioned, analysis system for the MAGIC Telescope. Several in-
stitutes are taking part in this experiment, and a big effort has to be done in coordinating
all the people who contribute to this project.

Contents

1 Introduction 2

N

2 Steps in the design of the software system

3 Analysis system for MAGIC
3.1 Requirements analysis phase.
3.1.1 Events
312 UseCases« o v v i i it i
3.2 Domain analysis phase 0
3.3 Define objects behaviour, Detailed design and Implementation
3.4 Testing

N OO U W W

©

4 Documentation and conventions

5 Conclusions 9

1 Introduction

1 INTRODUCTION

The MAGIC Telescope Collaboration is composed by several institutions in Germany, Spain, Italy,
Crimea and Armenia. There are also several persons involved from other countries. Of course, not
all the people in these institutes and universities will be involved in the design of the software tools
needed for the data acquisition, control and analysis. Nevertheless, a considerable number of people
will take part, more or less directly, in the development of these programs. In order to make a success
out of it, a clear image of what is needed and what we want is crucial.

Some of the things you will read in this small document may sound trivial. Well, I would say probably
most of them are trivial. But in designing such a complex system it’s much better to go step by step,
being sure that one always knows what he/she is doing.

In this small document I will enumerate the list of tasks which we have before us. Moreover, T will
try to outline the interrelation between these tasks, their priorities and the way they communicate
with each other. This will show just which the strategy I suggest is. The actual design can be and
will be for sure different, since there are still a lot of unclear things to be discussed. All this work, to
be done, will help us not only to clarify a lot some of those points which seem to be obvious a priori,
even when they are not, but also will serve as additional documentation in case our system has to be
changed or upgraded.

2 STEPS IN THE DESIGN OF THE SOFTWARE SYSTEM

There are several steps in the design of a complex software system. I will assume henceforth, as a
clear decision, that an Object Orientation (OO) approach is going to be use in the final system. T will
as well assume several things about how the different kinds of data are handled and organized, but
this would be at the end a matter of details. As an example, I will talk about control, calibration, and
real data files, although in principle we could merge all these data in a single file, or split in several
sub-types of files.

In my opinion, the evolution of the design of a complex software system should follow these guidelines:

Requirements analysis phase In this phase we shall study what the requirements of the system
are and which their different uses. Once we know what our system must do, we should define all
the events' that eventually will occur in the evolution of the whole system (computing system
+ agents). The definition of events will help us to identify probable collision of actions, in which
case a set of given priorities must be established. Also in this phase we shall identify the different
uses (use cases) of our system.

Domain analysis phase In this phase we must identify the different objects taking part of our
system and/or interacting with it. These objects may have different natures, they can be active
or passive objects, physical devices or their wrappers, visual elements or even abstract concepts.
Once we have defined these objects, we should try to visualize their interdependencies in a
global class diagram. This class diagram will help us to subdivide our system in autonomous
subsystems, and for each of these we shall create a subsystem class diagram.

!By using the word event I do not mean event in the physical meaning we are used to. What I mean by
event is simply something that happens in our analysis software, an action that could have a reaction from the
system when it is detected (for example a mouse-click is a typical example of an event: if the mouse happens
to be clicked on a button in our interface with a label “Quit”, the probable reaction from the system will be to
finish itself and end the analysis session).

3 Analysis system for MAGIC

Define objects behaviour Once we have identified the objects inside our system, we must define
the dynamical behavior of each of them, in response to the different events which may occur in
the system.

Detailed design After having defined all the structure of our system globally, we must go into details.
This is specially true for any wrapper of a hardware component.

Implementation This is the mechanistic step in the design of our system. We will use any object
oriented language for our purposes.

Testing Although in this list this is the last point, it doesn’t mean that this task should be performed
at the end. On the contrary, we should use the clean-room philosophy, which briefly emphasizes
correctness verification, rather than testing, as the primary mechanism for finding and removing
errors. I will talk about this issue in more detail in another section.

3 ANALYSIS SYSTEM FOR MAGIC

I will try to use this methodology in the different steps of the design of a data analysis system for
MAGIC. In MAGIC we will have a lot of peripherals providing calibration data, which will be stored
in disk and available in the analysis phase. These data will be available, of course, in the near-real-
time analysis as well. Since there would be no big difference in the near-real-time analysis and in the
off-line analysis, we could aim our design in order to take into account both regimes. However, I will
concentrate in the off-line analysis system (or better, non real-time conditioned analysis).

3.1 Requirements analysis phase
As T mentioned before, in this phase we must study what the requirements ans uses of the system are.

In a few words, the main features of our system must be:

e It must load real data files, calibration files, system control files and analysis criteria files, and
analyze them.

e It must be able to interpret command files provided by the user.

e It should have online help capabilities (tool-tips, what’s this tips, online help files, whatever).
e It must generate a whole set of statistics and results, and save them in a file.

e Capability of printing statistics from the events, or events data.

e Command-line mode, for batch operation (BATCH mode).

e Easy to use with a friendly Graphical User Interface (GUI). The system, when operating in GUI
mode, must react to any event from the system itself or from the outside world.

e It must be able to select individual events, in order to extract them or analyze them alone,
following several criteria provided by the user.

e Capability of exhaustive logging of every action/reaction of the system.

3.1 Requirements analysis phase

—_—_—— = == = - = = = = ~

' Environment :

| |

|

! User '

: : ANALYSIS SYSTEM

! |

! |

|

' O Calibration/
: . control
! TEEES data inerpreter
|

| J _

| . .

! 7

! e

l

! Kernel N

I ~N

| N N

| N R

|

|

: / -

! ata

I \% ' provider Gul

! I

: Control data :

! |

! |

~ e e e e e e e =~

Figure 1: Simple illustration of the communication of our analysis software system with its
environment.

This is just a generic list of features. The optimal list of features/requirements of the system can
be obtained after discussion, in what is called kick-off meetings. Nevertheless, in order to better
understand the requirements of our system, we must analyze which events can occur in the context of
the operation of our system.

3.1.1 PEvents

First, we have to define the environment. Our environment is defined by several agents. We would
have the commands file, if any (when working in BATCH mode), the data files, the calibration files,
and the user (when working in interactive, or GUI mode). The system interacts with the environment
through messages. These messages can be requests by the agents (the user or the commands file) or
services by the system to the agents. In the fig. 1 a general view of such system is shown. From these
messages, the most important ones are those which I called events. I will try now to identify some of
the events our system should support.

i. The user presses a command button (in GUI mode)
ii. The user presses a parameters button (in GUI mode)

iii. The user presses the STOP button (in GUT mode)

3.1 Requirements analysis phase

iv. A command is given from the commands file (BATCH mode)
v. A parameter is set from the commands file (BATCH mode)
vi. A STOP is given from the commands file (BATCH mode)
vii. A block of calibration data is received
viii. The calibration data stream is empty
ix. The calibration data originates an error
x. A block of control data is received
xi. The control data stream is empty
xii. The control data originates an error
xiii. A block of real data is received
xiv. The real data stream is empty
xv. The real data stream originates an error
xvi. A long set of calculations is going to start

xvii. A long set of calculations finished

We can see that the first set of three events and the second one are identical in the reaction of the
system. This is clear from the point of view that only the kernel of the system will execute the reaction
to such events, being the GUI and the Commands Interpreter simple interfaces to it. This is also true
for several of the other points enumerated here. This shows us how our system can be modularized.
I omitted here the events from the point of view of the system, i.e., the services the system gives to

the user (for example, when the system shows some result from an analysis to the user in the form of
an ALPHA plot).

3.1.2 Use Cases

In this part of the design, we should clarify the functionality of the system from the user’s point of
view, i.e., what we want the system for. Here I will omit what the system is actually doing in each
case. Some of the uses can be:

a) Get the significance and other statistics of a source from a set of observations in given periods.

b) Get information of how the real system (the telescope, in our case) is behaving (statistics on
calibration and control data).

¢) Produce nice (and fast, not necessarily so nice) printouts of some events and all the data.

d) Detect faulty real, control or calibration data sets.

Once we have listed all the uses of the system, we should try to figure out what the system must in
fact do in order to fulfill each use.

3.2 Domain analysis phase

Persistent objects | Characteristics of reflector

Characteristics of camera

Characteristics of environment

Session objects Date, time, ...

Type of analysis (source, laser, ...)

Results from calculations

Concepts FADC entries (per channel data)

Real data

Laser data

Control data (LIDAR, Weather station, ...)

Logging information (warning, alarm, errors, ...)

Current logging data

Calibrated data

Transactions Messages (events)

Visual elements Menus

Command buttons, parameter buttons

Tool bar

Help handlers (status bar, tooltips, online help, what’s this,
task progress indicator, ...)

Visual representations handlers

Printouts handler

Table 1: Objects identified in our analysis system.

3.2 Domain analysis phase

As T mentioned before, this phase is devoted to identify the different objects taking part in our system.
In table 1 T give an example of some of the objects we can identify in our system.

This is of course not an exhaustive list of all the objects taking part in the system (it cannot be:
only one person did it!). Nevertheless, I will try to outline the interdependencies of these objects
in a global class diagram (see fig. 2). All these objects, from the operability point of view, can be
grouped into subsystems. Each of these subsystems should be nearly independent from the others in
their functionality, being the only relationship between them the exchange of information. In fig. 3 I
outline the subsystems in which the system can be divided.

The main task in this step is to construct and visualize all the subsystem’s class diagrams in our
system. This really means to define the structure of the classes we are going to work with, with their
members, methods, slots and signals (if any), all of them public, protected or private. This task is
better performed in an “incremental” way (first defining the more important classes, even abstract
ones, and their members and methods, and then fine-tuning them). But it is anyway a huge task, and
my proposal is to write down first the conventions for the definition of the classes, members, methods,

., and then to divide the job. On the contrary, if we just want to make a brain-storming one or
more meetings, and state this structure once for all, I would suggest nevertheless to define first that
list of conventions.

3.3 Define objects behaviour, Detailed design and Implementation

Specifying the list of classes that appear in our system, as well as their members and methods, together
with their scope, is a big task, but not the biggest one. Perhaps a bigger effort comes in the description

3.4 Testing

L Currents

: | data

| |

T

'
data

statistics

Calibration

Logging
information
Reflector
charac.
Camera
charac.

Calibrated

Kernel

Environment

charac.
| Time

Figure 2: Outline of the analysis system’s class diagram.

Printer

handler

of what each object is going to do in any possible context. For every input the object could have, a
clear description of how it is going to react must be done in order to understand and have a very
clear view of what we have to implement in the final code. This is also a complex process, but just by
doing the exercise of trying to understand what the object really does we will expend much less time
afterwards in the implementation. In addition, this would the best source of documentation once the
system is running, and will serve as the best introduction for new users of the software system, as well
as for new contributors.

In the detailed design we will introduce platform dependent code as well as system and hardware
specific code, if needed. This could be the case of differences in the GUI for different systems or

differences in the flags for specific platforms?.

3.4 Testing

Up to now I did not mention the fact that protection against defects and error correction can expend
as much as 50% of the time and 50% of the cost of a project. Therefore, we must focus our attention
in incremental software testing. This is the key point of the software methodology called Clean-room
Software Engineering. The name is inspired in the clean rooms used in precision manufacturing, where

20ff-topic: nowadays this is usually not the case, and hopefully it will not be in our case, but we must be
smart enough

3.4 Testing

<<subsystem>>

Calibration

<<subsystem>>
<<subsystem>>

Data provider
P Control

data checker

<<subsystem>> <<subsystem>>

Static data Kernel

<<subsystem>>

Results
provider

<<subsystem>>

GUI

Figure 3: A view on the different subsystems in our analysis software.

statistical quality control techniques emphasize defect prevention over defect removal.

The clean-room approach is the so called incremental pipe-line. The whole process is divided in
black boxes, which correctness must be separately proved. Once the whole chain of mini-systems are
proven to be right in their output for all their possible inputs, each box is divided in smaller, detailed
subsystems. Then we start again. This technique can lead to software that have remarkable high
quality. However, the clean-room approach is a very technical one, which makes use of mathematical
models and statistical techniques in order to reach his high quality at any given step.

I do not propose to use such techniques, since we are not prepared at all for such task. What I propose
is an incremental testing of every sub-unit of our software, whenever a modification is made. Each
of these sub-units would be separated from the whole system and separately tested with a whole set
of different inputs. This will not only improve the software quality in terms of defect prevention, but
also will enhance the modularity of our system.

In order to be able to do that, a clear set of rules for interfacing each sub-unit (say module, function,

routine, whatever) with the rest of the system must be established. Of course, such set of rules should

be approved at the very beginning of the development process>.

31 have in mind to prepare an outline of such rules, together with some recommendations in the way of
documenting our final code. They might be the subject for another document like this one in a near future, and
a kind of seed for further discussion.

4 Documentation and conventions

4 DOCUMENTATION AND CONVENTIONS

From my personal point of view, there is something very clear: having good documentation is
extremely important. I feel sometimes that having a simple system that at least works is what
people think is sufficient. In my opinion, this way of thinking is our worst enemy. As far as we have
time to do a good work (and we still have time) we must do it. Otherwise we will have problems
sooner or later, and this problems can be hard to solve in a complex system like ours. In this context
the documentation is never enough. I would propose an exhaustive documenting process in our
development.

In addition, some conventions about the practical implementation (naming conventions, documenta-
tion of code, objects layering and inheritance, ...) must be set up. In my opinion we have to be
very strict in the sense of standardization. Perhaps there should be a responsible of the special task
of taking care that standards and conventions are followed. Quoting Todd Hoff in his “C++ Coding
Standard”* about “Standards Enforcement”:

“First, any serious concerns about the standard should be brought up and worked out
within the group. Maybe the standard is not quite appropriate for your situation. It may
have overlooked important issues or maybe someone in power vehemently disagrees with
certain issues :-)

In any case, once finalized hopefully people will play the adult and understand that this
standard is reasonable, and has been found reasonable by many other programmers, and
therefore is worthy of being followed even with personal reservations.

Failing willing cooperation it can be made a requirement that this standard must be
followed to pass a code inspection.

Failing that the only solution is a massive tickling party on the offending party.”

Of course, an standard is not needed for success. But it makes things easier and the development will
go for sure smoother.

5 CONCLUSIONS

There are several conclusions about this document. I suggest using the development strategy outlined
in section 2, namely using the steps Requirements analysis phase, Domain analysis phase, Define objects
behavior, Detailed design and Implementation. In the process of design of our system, a good amount
of documentation is generated, but in addition things will appear more and more clear. Together with
this I suggest an incremental way of testing: in every phase of the development we should be able
to check the design and detect faulty elements (this is specially true in the implementation phase).
Finally, I propose the preparation of several documents about conventions and standards to be used
in our analysis group, and which should be strictly followed by everybody.

4T. Hoff, “C++ Coding Standard”, May 1999, http: //www.possibility.com/Cpp/CppCodingStandard.html

