Recommendations on writing self-documented
source code

J.C.Gonzélez
Max-Planck-Institut fiir Physik, Munich
<gonzalez@mppmu.mpg.de>

5/3/99

Abstract

In this document we explain some tricks to get fast good documenta-
tion out of the source code we write. Any piece of code should be exten-
sively documented, both inside the code itself and outside, with manuals,
reports, user guides, etc. Here we will talk about the first part of the
documentation process, the self-documented source code.

Contents

1 Introduction 1

2 Self-documented code 2

3 Commenting the code 7
3.1 Comments insidethecode 8
3.2 Short comments 8
3.3 Longcomments, 9
3.4 Bibliography o o 9

4 Enhanced documentation 9

1 Introduction

The documentation of every software project, big or small, is one of the most
important and difficult processes in the development of that project. One of the
most important parts of the documentation is documenting the code itself. The
final user will not see it, probably. But the programmers who have to maintain
the code, upgrade it, modify it or even find bugs (even the original developers)
will have a hard life without these comments. In fact, this is what actually all
the programmers are doing most of the time: maintaining old code. Quoting to
S. Oualline:

“The amount of time spent on maintenance is skyrocketing. From
1980 to 1990 the average number of lines in a typical application went

from 23000 to 1.2 million. The average system age has gone from
4.75 to 9.4 years.”

Without a good documentation, the job of the programmers will take longer
and the releases will not come at time. The whole project will be delayed. And
this, of course, is bad.

2 Self-documented code

The best thing one can do when writing a piece of code is write it clear, without
fancy things. Most of the people only like to see obfuscated code as a kind of
art, but not when they have to modify a program written by another people.
Let’s make some fancy numbers. One has to think that the the time a program
is going to live goes as the square of the time that the programmer thought it
was going to live (the program, not herself). Another approximate law could
be that the number of people p who are going to have a look into your code is:

P X Nfiles 12 exp(—Nfomm) (1)

and, of course, the number of problems you will have, afterwards, will go like a
big power of p. You realized that these were simple estimates.

In fact, although this seems to be a joke, it is true that a self-explanatory
source code will make life easier for a lot of people, including the original devel-
oper. Writing with a good style is one of the most important (and uncommon)
signatures of a good programmer.

Talking about style, there are a lot of different forms of making comments.
You can even have a sort of hierarchy of comments: some of them used as
function headers, some others to mark different sections of code, etc. They
can be multi-line comments, in plain form or boxed, or they can be single-line
comments. There are hundred of different forms of writing comments. Use your
own. But use it.

How can we make a source code easy to read and maintain? The secret is:
at least 80% of a source file should be comments. But, in addition, you can
follow some recommendations to make a self-explaining code. We make some
tips for that. Since almost all the code we will write will be done in C/C++, 1
will stick on these languages in the examples.

Main comment of your program At the beginning of your program it is
recommended to put a relatively large comment, where you can see the name
of the file, the author, notes about the code and, what is more important, the
purpose of that piece of code. Having such a header is a convention, but usually
not all the people use such thing, or they use it only some times. For example,
you can eagily see how some people write really nice comments at the beginning
of their source code files (.c), with more or less details about the purpose of the
code, but they don’t write a single comment inside the header files (.h). In the
Example 1 you can see how such header could look like. (Actually you don’t
get much information from such header — but the rest of the file is extensively
commented).

Example 1. Example of comment at the beginning of a source file.

1117777777177777777777777777777777777711777117777777111777171777

//

// camera

1/

// efile camera.cxx

// @title Simulation of the camera phase

// @desc Program for the simulation of the camera

// @author J C Gonzalez

// @email gonzalez@mppmu.mpg.de

// @notes These notes are really small, they should be
// much longer

//

// @maintitle

F e S

// $RCSfile: camera.cxx,v $

// $Revision: 1.11 $

// $Author: gonzalez $

// $Date: 1999/01/14 17:32:39 $
[17777777777777777177777777177777777777777777771/7777777777777

When defining variables

1. Use variable names which can give you an idea of what they mean. This
means, use descriptive names for them. But you can always use names
like i, n, k as simple counters in loops (assumed you document that
specific use). For example, say number_of photons instead of nph, or
get_parameters fit instead of getpfit.

2. Always use lowercase for the names of the variables. Use them also for
names of functions. Reserve the capitalized names for enum definitions,
constants (const), complex types of variables (structures, classes, unions,
...) or even global variables (although you should not use them any-
way). Reserve the all-uppercase names for preprocessor constants or flags
(defines). For example, we can define a class like Mirror_square

class Mirror_square {

b

and use it to define our array of mirrors as
#ifdef DEFINE_NUMBER_OF_MIRRORS

const int iNumber_of_Mirrors = 936;
#endif // DEFINE_NUMBER_OF_MIRRORS

Mirror_square mirrors[iNumber_of_Mirrors];

};

3. Use eventually an underscore (_) to separate words in a multiple words
variable name. But, please, do not mix upper and lower case. You could
say, for example, number_of mirrors, but not NumberOfMirrors or, even
worse, numberofmirrors. Nevertheless, don’t use a very long name for a
variable, like number_of _elements_this_array_should have.

4. Use a one char prefix for every variable, giving an idea of what is the
type of that variable (for constant values, you can either use this prefix or
not). In the Table 1 you can find some of the most common prefixes used.
For example, in the previous example in point 2, we defined the variable
iNumber_of Mirrors, with a prefix i of “integer”.

5. Use also a suffix in the form _units, expressing the units in which that
variable is measured (if any). For example, the surface of a circle would
be defined as float fCircle_surface_cm?2, using a prefix f for float, and
provided our surface is in square centimeters (cm?)

6. Document all the variables that you define in your code. Use for that
purpose at least one line of comment before the definition itself. The
before is important: I have seen people who used to put the comments
after the definition of the variable, and since the common way is to put
them before, one thinks that the comments belong actually to the next
variable. Crazy.

Although the points 4. and 5. could be matter of discussion (for example, if
you always use floats, or you specify clearly at the beginning exactly the units
of all your variables, in a relatively big comment), the first two and the last one
should be taken as real recommendations.

All this can be summarized in the piece of code shown in the Example 2.

Example 2. Example of variable definition using prefix as type
indicator and suffix as units indicator.

// use optimized algorithms if debugging is off
#ifndef __DEBUG__

define __OPTIMIZED__
#endif // __DEBUG__

// define number of mirrors in the tessellated frame
const int iNum_Mirrors = 20;

// define a coordinate type (for loops)
enum Coordinate {X, Y, Z};

int get_mirror_parameters()

{

}

// position of the center of the telescope
float ftelpos_cm[iNum_Mirrors][3];

// area of the telescope;
float ftelarea_cm2[3];

// maximum energy of the showers
float fenergy_gev;

// counter on the coordinates
Coordinate k;

// simple counters
int i;

//++ START

// loop on mirrors
for (i = 0; i < iNum_Mirrors; ++i) {

// inner loop on coordinates
for (k = X; k < Z; ++k) {

// do a silly thing
ftelpos_cm[i] [k] = getvalue(i, k);

return(0) ;

Table 1. Different prefixes commonly used when naming variables

(unsigned / signed) char

strings (arrays of chars)

int , short

unsigned int

float

double

pointer (may be with an additional letter
explaining the type of value where it’s pointing to.

T S RO

When writing functions

1. Use also the notation explained above for the definition of variables (i.e.
lowercase+underscore, with perhaps additional prefixes and suffixes for
the type of the returning value). For example, you could define a function
like int iget number _photons.

2. Write a small header before the definition of the function, explaining what
it does, what is the meaning of each parameter (and the possible range, if
any), and what is the possible returning values. Normal fields to show in
this header are the name of the program, the name of the module (in the
case of a multi-module program), the purpose of that code, the author,
and a sort of semi-detailed explanation of the global behaviour of the code.
It is useful also to add a sort of history of changes. Most of the systems
now use some version control system, and one of the features of this kind
of programs is that they include automatically the information that the
user has added when a new version of the code was released.

1117777777177777777777777771717777777771777777777777111777711777
// @name get_select_energy

//

// @desc return energy range allowed for particles

//

// @var *le Lower limit in the allowed energy range

// @var *ue Upper limit in the allowed energy range

// @return TRUE: we select the energy range; FALSE: we don’t

//

// @author J C Gonzalez

// @date Wed Nov 25 13:21:00 MET 1998

// @notes This is an example of enhanced documentation
// (see below)

// @function

// @code

[1177177771777
// get_select_energy

//

// return energy range allowed for showers from .phe file

I111777177777777777777777777777777777711777717777777111777171777

int
get_select_energy(float xle, float *ue)

{
}

3. Use ANSI prototypes, i.e. instead of using the old form

float power(a, b)
float a;

int b;

{

}
use better the form:

float power(float a, int b)
{

}

If you have not seen this before, and you don’t know non-ANSI C, there’s
no need to learn it: simply forget what I said about non-ANSI and write
in ANsI C.

Consistency There is another rule, which is not easy to follow: no matter
the style you use to comment your code, you should be consistent. If you decide
not to use a units suffix, don’t change afterwards in the same code. It will be
all more homogeneous and easier to maintain.

3 Commenting the code

When writing a piece of code, most of the (bad) programmers just start typing
until they have something that already could work. I don’t want to comment on
programming styles. But with this strategy there is something which is always
missing: the documentation inside the code itself. Normally, what comes after
this fast-typing is the refinement of the code. This means still no documentation
at all. The code will grow and grow, and, you know, how many lines of comments
do we have? Not a single one. Well, may be from time to time, the innermost
part of our brain remind us that we should put some comments here and there,
but this doesn’t happen very often. Then you have a conference or a meeting
somewhere, and when you come back you don’t remember what were you doing.

There are three rules to write well commented code: first, write comments
almost before every line of code; second, write more comments; and third, write
comments between those comments. (Don’t forget also to use from time to time
a line of real code).

We could say that there are two kinds of comments: short and long com-
ments. Normally we only use the short comments, and reserve the long com-
ments for the real documentation.

3.1 Comments inside the code

Inside the code itself is where most of the comments will be placed. Follow these
simple rules, and it will be easier also for you:

e Divide your code into mayor sections. For example, may be first you parse
the command line parameters of your program, then read some data files,
then compute a little bit and at the end present the bulk of the results.
Well, these are mayor sections of your code, and you should separate
them with a clearly visible comment, explaining what is the status at that
moment, and what is going to do the next section of the code. A boxed
multiline comment is ideal for these cases.

e Use a single comment, if possible, for each line of code. Sometimes this is
simply too much, but then do not use a single comment for more than a
dozen of lines or so. In this latter case, explain clearly what your code is
doing.

e In the long comments, you can also emphasize things, and you should do
it:

ko ok o ek sk sk ok o ksl oo o sk ok o o ok ks o o o ks ok o ok sk sk o ok sk sk ok o ok ko
* x x NOTE x * *

Even when you write a comment you can
emphasize words like *this* one.

You can also simulate a kind of _underline_

REMEMBER, write a lot of comments.

* ¥ ¥ X X X ¥ x

***/

e As a matter of style, I use to put the single-line comments in a separate
line above the line of code. Some people put it at the right of the code
(I do it also sometimes). But you probably will change that line, and will
be longer, and the comment will go too much to the right. Is a common
rule to write lines with no more than 80 characters/line. This is due to
historical reasons, but still a lot of people think that this is a good rule.
Therefore, I try not only to follow the 80-characters rule, but also to write
my single-line comments in a different line

3.2 Short comments

We call short comments to single-line comments, or multi-line comments with
only few lines, explaining if few words what is doing the code at that moment
(or what is going to do). In C both short and long comments have to be written
between /* and */. You can do this also in C++, but most of the cases the
preferable way is using the one-line comment format: // comment Thisis
also the shortest way.

3.3 Long comments

We call long comments to one or more paragraphs of comments, enclosed be-
tween in the C form /* ... =/. For long comments, this is the preferred way
because you write paragraphs in more or less good English, and you may want
to format them, and using the form // ... would be simply a mess.

One tip: there is no limit in the modern compilers to the number of lines
you can put in a comment. There is also no limit in the number of comments
inside the code. If this is so, why we simply don’t write long documentation
inside the code?

3.4 Bibliography

On every technical or scientific paper you will find at the end a list of bibli-
ographic entries, in which you can get more information related to the point
in which a given particular entry was cited, or related to the whole subject of
the paper. Well, why shouldn’t we use also such thing in our source code? We
normally get algorithms, methods, ideas or even data from external source. If
somebody afterwards have to maintain our code, it would be simply easiear for
her/him if we write down the source of every external information. Therefore,
I recommend to use a sort of bibliography at the end of the source code file.
They could look like this:

// [tasch:mat]
// I. L. Bronstein et al., "Taschenbuch der Mathematik",
// Verlag Harri Deutsch, 1997

You will give the entry numbers (or labels) yourself, but otherwise the order is
really non-important. Then, in the code itself, you can cite this entry

// Here we calculate the volume of a torus
// We use the formulae from [tasch:mat], p. 141
// V=2pi2 R r2

fvolume_torus_cm3 = 2.0 * SQR(M_PI)
* fradius_big_cm * SQR(fradius_small_cm);

4 Enhanced documentation

There are a lot of programs, simple and complicated ones, that parse the code
inside a file, extract information contained explicit or implicitly in the com-
ments, and create well formatted documentation in the form of ITEX or HTML
documents. Most of these programs are simple scripts which help the user to
maintain their own code. This is the case of SuS. We will talk about this small
utility in another document.

The operational scheme of these tools is very simple: you can embed com-
mands for the documentation script in your comments, since they will not affect

to the compilation of the program. In this way, you can have both the documen-
tation of your code together with the code, in the same file. The documentation
tool you use will interpret these commands inside your comments in order to
produce a well structured and eventually pretty-printed documentation.

It is not only convenient to use such tools. It’s also very useful and very
easy. It is useful because most of the time, when you are writing your code, you
must think on the comment you have to put there. It has to be good enough,
since will be printed afterwards in a nice way (like a ITEX report) or browsed
through any HTML navigator. Therefore you are somehow forced to explain with
words what you are coding. And most of the times you will even understand
things better. Finally, it is also very easy to use these tools, since only with a
couple of commands you can start writing a good self-documented code.

But remember, these tools will not work for you. It is you who has to write
the documentation. Please do it carefully. And do it extensively as well.

References

[1] J. C. Gonzélez. SuS, a tool for source code documentation. Max-Planck-
Institut fiir Physik, Miinchen, March 1998. In preparation.

[2] D. E. Knuth. Mathematical writing. Report based on a course of the same
name given at Stanford University, Autumn 1987.

[3] S. Oualline. Practical C++ Programming. O’Really & Associates, Inc., 1997.

[4] R. Stallman. GNU Coding Standards. Technical report, Free Software Foun-
dation, Inc., 1998.

10

